7 - 1

V = 2114.77 (11) Å³

 $0.37 \times 0.17 \times 0.05~\text{mm}$

32295 measured reflections

9641 independent reflections 6196 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.67 \text{ mm}^-$ T = 296 K

 $R_{\rm int} = 0.041$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

cyclo-Tetrakis(*µ*-naphthalene-1,8dicarboxylato)tetrakis[diaqua(2,2'bipyridine)manganese(II)] tetrahydrate

Ling Chen

School of Pharmacy and Material Engineering, Jinhua College of Vocation and Technology, Jinhua, Zhejiang 321017, People's Republic of China Correspondence e-mail: chenling78@126.com

Received 18 November 2010; accepted 26 November 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.045; wR factor = 0.115; data-to-parameter ratio = 16.7.

In the title centrosymmetric tetranuclear complex, $[Mn_4(C_{12}H_6O_4)_4(C_{10}H_8N_2)_4(H_2O)_8]\cdot 4H_2O$, two independent Mn^{II} ions are coordinated in a slightly disorted octahedral environment by two aqua ligands, two naphthalene-1,8dicarboxylate (1,8-nap) ligands and one bis-chelating 2,2'bipyridine (2,2'-bipy) ligand. In the crystal, molecules are linked by intermolecular $O-H\cdots O$ hydrogen bonds into chains along [100]. These chains are further linked by weak π - π interactions with centroid–centroid distances in the range of 3.609 (2)–3.758 (1) Å, forming a three-dimensional supramolecular network.

Related literature

For related structures, see: Feng *et al.* (2008); Fu *et al.* (2010); Wen *et al.* (2007, 2008).

Experimental

Crystal data $[Mn_4(C_{12}H_6O_4)_4(C_{10}H_8N_2)_4-(H_2O)_8]\cdot 4H_2O$

 $M_r = 1917.36$ Triclinic, $P\overline{1}$

a = 10.3323 (3) Å
b = 14.3847 (4) Å
c = 15.4299 (5) Å
$\alpha = 77.760 \ (2)^{\circ}$
$\beta = 74.198 \ (2)^{\circ}$
$\nu = 76.009 \ (2)^{\circ}$

Data collection

Bruker APEXII area-detector	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Sheldrick, 1996)	
$T_{\min} = 0.87, \ T_{\max} = 0.97$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ 3 restraints $wR(F^2) = 0.115$ H-atom parameters constrainedS = 1.06 $\Delta \rho_{max} = 0.50 \text{ e Å}^{-3}$ 9641 reflections $\Delta \rho_{min} = -0.41 \text{ e Å}^{-3}$ 577 parameters $\Delta \rho_{min} = -0.41 \text{ e Å}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W-H1WA\cdots O2$	0.85	2.00	2.690 (2)	139
$O1W-H1WB\cdots O6^{i}$	0.84	2.01	2.776 (2)	151
$O2W-H2WA\cdots O4$	0.83	1.90	2.712 (2)	166
$O2W - H2WB \cdots O5W$	0.83	1.90	2.716 (3)	169
O3W−H3WA···O8	0.84	1.92	2.742 (2)	167
$O3W - H3WB \cdot \cdot \cdot O2W$	0.84	2.24	3.083 (3)	180
$O4W-H4WA\cdots O6$	0.87	1.78	2.622 (2)	161
$O4W - H4WB \cdots O6W$	0.83	2.03	2.853 (3)	170
$O5W-H5WA\cdots O7^{i}$	0.97	2.16	2.807 (3)	123
$O5W - H5WB \cdots O6W$	0.94	2.07	2.930 (3)	150
O6W−H6WA···O7 ⁱⁱ	0.84	1.99	2.798 (3)	164
O6W−H6WB···O3	0.81	1.95	2.752 (3)	171

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, y, z.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5168).

References

- Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Feng, X., Tang, Z. W., Feng, Y. L., Lan, Y. Z. & Wen, Y. H. (2008). Chin. J. Inorg. Chem. 24, 1713–1717.
- Fu, J. D., Tang, Z. W., Feng, X. & Wen, Y. H. (2010). Sci. China Chem. 53, 1060– 1067.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wen, Y. H., Feng, X., Feng, Y. L., Lan, Y. Z. & Yao, Y. G. (2008). Inorg. Chem. Commun. 11, 659–661.
- Wen, Y.-H., Feng, X., He, Y.-H., Lan, Y.-Z. & Sun, H. (2007). Acta Cryst. C63, m504–m506.

Acta Cryst. (2010). E66, m1705 [doi:10.1107/S1600536810049433]

cyclo-Tetrakis(*H*-naphthalene-1,8-dicarboxylato)tetrakis[diaqua(2,2'-bipyridine)manganese(II)] tetrahydrate

L. Chen

Comment

Presently, our studies are focused on selecting suitable multidentate ligands to construct novel coordination architectures. 1,8-Naphthalenecarboxylic anhydride, which is can be hydrolysed to naphthalene-1,8-dicarboxylate(1,8-nap) under hydro-thermal conditions, is a versatile building block which can be used to construct interesting structures due to the potential variety of bridging abilities. Some complexes containing 1,8-nap have already been reported (Fu *et al.*, 2010; Feng *et al.*, 2008; Wen *et al.*, 2008; Wen *et al.*, 2007). Herein,we report a new Mn(II) complex containing a 1,8-nap ligand, [Mn₄(1,8-nap)₄(2,2'-bipy)₄(H₂O)₈].4(H₂O),(I).

The molecular structure of (I) is shown in Fig.1. The formula unit consists of four Mn atoms, four 1,8-nap anions, eight coordinated water molecules, two 2,2'-bipy and four lattice water molecules. Unique atoms Mn1 and Mn2 are six-coordinated and have slightly distorted octahedral coordination environments formed by two 1,8-nap ligands, two N atoms from one 2,2'-bipy and two water molecules. All carboxylate groups of the 1,8-nap ligands are deprotonated, and adopt a monodentate coordination mode. Each 1,8-nap ligand links two Mn^{II} ions and hence each Mn^{II} ion coordinates to two 1,8-nap ligands to form a [Mn₄(1,8-nap)₄] neutral ring. Four 2,2'-bipy ligands are oriented to the outer side of the ring while the aqua ligands point to the inside of the ring.

In the crystal structure, (Fig. 2) intermolecular O—H···O hydrogen bonds involving coordinated water molecules, solvent water molecules and carboxylate group oxygen atoms, link molecules to form a one-dimensional chain along [100]. In addition, weak π - π interactions with centroid-centroid distance in the range of 3.609 (2) to 3.758 (1) Å between symmetry related 2,2'-bipy ligands lead to the the formation of a three-dimensional network.

Experimental

A mixture of $MnCl_2(0.1003 \text{ g}, 0.5 \text{ mmol})$, naphthalene-1,8-dicarboxylic anhydride (0.0991 g, 0.5 mmol), NaOH (0.0402 g, 1 mmol) and 2,2'-bipyridine (0.0378 g, 0.25 mmol) and ethanol-water (15 ml, V/V, 1:2) was sealed in a 25 ml stainless steel reactor with a Telflon liner and heated at 433 K for 72 h. On completion of the reaction, the reactor was cooled slowly to room temperature and the mixture was filtered, giving colourless block-shaped single crystals suitable for X-ray analysis.

Refinement

H-atoms were positioned geometrically and included in the refinement using a riding-model approximation [C-H = 0.93] and O-H = a found positions] with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x+1, -y+1, -z+1]

Fig. 2. Part of the crystal structure with green dashed lines to show the donor-acceptor distances of hydrogen bonds (H atoms are not shown) and pink lines to show the π - π interactions.

$\label{eq:cyclo-Tetrakis} (\mu-naphthalene-1, 8-dicarboxylato) tetrakis [diaqua(2, 2'-bipyridine) manganese(II)] tetrahydrate$

Crystal data

$[Mn_4(C_{12}H_6O_4)_4(C_{10}H_8N_2)_4(H_2O)_8]$ ·4H2O	Z = 1
$M_r = 1917.36$	F(000) = 988
Triclinic, <i>P</i> T	$D_{\rm x} = 1.506 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 10.3323 (3) Å	Cell parameters from 5948 reflections
b = 14.3847 (4) Å	$\theta = 1.5 - 27.6^{\circ}$
c = 15.4299 (5) Å	$\mu = 0.67 \text{ mm}^{-1}$
$\alpha = 77.760 \ (2)^{\circ}$	T = 296 K
$\beta = 74.198 \ (2)^{\circ}$	Block, colourless
$\gamma = 76.009 \ (2)^{\circ}$	$0.37\times0.17\times0.05~mm$
$V = 2114.77(11) \text{ Å}^3$	

Data collection

Bruker APEXII area-detector diffractometer	9641 independent reflections
Radiation source: fine-focus sealed tube	6196 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.041$
ω scans	$\theta_{\text{max}} = 27.6^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 13$
$T_{\min} = 0.87, \ T_{\max} = 0.97$	$k = -18 \rightarrow 18$
32295 measured reflections	$l = -19 \rightarrow 20$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.115$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0516P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
9641 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
577 parameters	$\Delta \rho_{max} = 0.50 \text{ e} \text{ Å}^{-3}$
3 restraints	$\Delta \rho_{\rm min} = -0.41 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Mn1	0.25463 (4)	0.76117 (3)	0.46946 (2)	0.03213 (11)
Mn2	0.38953 (4)	0.49105 (3)	0.78495 (2)	0.03230 (12)
01	0.25004 (16)	0.79966 (12)	0.59713 (10)	0.0354 (4)
O1W	0.46961 (17)	0.77539 (13)	0.42064 (12)	0.0494 (5)
H1WA	0.5029	0.7430	0.4648	0.074*
H1WB	0.5219	0.7510	0.3756	0.074*
O2	0.46969 (17)	0.73941 (15)	0.59898 (12)	0.0540 (5)
O2W	0.2899 (2)	0.61536 (13)	0.54280 (11)	0.0602 (6)
H2WA	0.2749	0.6061	0.5991	0.090*
H2WB	0.2769	0.5661	0.5290	0.090*
O3	0.03335 (18)	0.65873 (13)	0.73071 (13)	0.0510 (5)
O3W	0.50323 (18)	0.48414 (14)	0.64458 (11)	0.0562 (5)
H3WA	0.5675	0.4364	0.6344	0.084*
H3WB	0.4454	0.5200	0.6167	0.084*
O4	0.25706 (16)	0.61265 (11)	0.72371 (10)	0.0354 (4)
O4W	0.22730 (17)	0.40881 (13)	0.79531 (12)	0.0482 (5)
H4WA	0.2859	0.3596	0.7735	0.072*
H4WB	0.1749	0.4249	0.7597	0.072*

O5	0.52168 (16)	0.35117 (12)	0.81890 (11)	0.0377 (4)
O5W	0.2207 (3)	0.47052 (17)	0.48764 (16)	0.0944 (8)
H5WA	0.1509	0.4921	0.4530	0.142*
H5WB	0.1449	0.4691	0.5379	0.142*
O6	0.43026 (18)	0.26289 (13)	0.75699 (12)	0.0477 (5)
O6W	0.05204 (19)	0.48703 (14)	0.67218 (14)	0.0626 (6)
H6WA	-0.0250	0.4730	0.6810	0.094*
H6WB	0.0380	0.5395	0.6880	0.094*
07	0.82217 (19)	0.41392 (14)	0.67703 (13)	0.0521 (5)
08	0.70690 (16)	0.32143 (12)	0.64178 (10)	0.0357 (4)
N1	0.0249 (2)	0.79384 (15)	0.47871 (13)	0.0358 (5)
N2	0.1971 (2)	0.91457 (14)	0.39807 (13)	0.0344 (5)
N3	0.2996 (2)	0.52060 (14)	0.92913 (12)	0.0346 (5)
N4	0.5154 (2)	0.58391 (14)	0.81433 (13)	0.0359 (5)
C1	-0.0580(3)	0.7300 (2)	0.51645 (18)	0.0473 (7)
H1A	-0.0206	0.6685	0.5426	0.057*
C2	-0.1956 (3)	0.7512 (2)	0.5184 (2)	0.0566 (8)
H2A	-0.2496	0.7047	0.5448	0.068*
C3	-0.2516 (3)	0.8414 (2)	0.4810 (2)	0.0588 (8)
НЗА	-0.3448	0.8577	0.4823	0.071*
C4	-0.1689(3)	0.9084(2)	0.44113 (19)	0.0496 (7)
H4A	-0.2054	0 9702	0 4149	0.060*
C5	-0.0304(2)	0.88263(19)	0 44059 (15)	0.0341 (6)
C6	0.0646(2)	0 95046 (17)	0 39762 (15)	0.0311 (6)
C7	0.0205(3)	1 04443 (19)	0.35954 (17)	0.0311(0) 0.0430(7)
H7A	-0.0720	1.0676	0.3605	0.052*
C8	0.1140 (3)	1.0070 1 1040 (2)	0.31990 (18)	0.032 0.0475 (7)
H8A	0.0857	1.1677	0.2938	0.057*
C9	0.0037	1.0680 (2)	0.31958 (19)	0.057
Н9А	0.3139	1.0000 (2)	0.2932	0.061*
C10	0.2862(3)	0.97346 (19)	0.35893 (18)	0.001
H10A	0.3784	0.97940 (19)	0.3583	0.053*
C11	0.376(2)	0.9495	0.3383	0.0370 (6)
C12	0.3270(2) 0.4079(3)	0.81400(1))	0.72314(10) 0.7214(2)	0.0570 (0)
H12A	0.4079 (3)	0.8770 (2)	0.7214 (2)	0.0502 (8)
C12	0.4738	0.0075	0.0090	0.007
U12 A	0.3931 (3)	0.9251 (5)	0.7948 (2)	0.0703 (10)
C14	0.4464	0.9090	0.7903	0.0630 (0)
	0.2979 (3)	0.9000 (2)	0.0714 (2)	0.0030 (9)
C15	0.2009	0.9370	0.9208	0.070°
	0.1091 (3)	0.8272(2)	1.0099	0.0023 (9)
HI5A C1(0.1045	0.8303	1.0088	0.075*
	0.0179(4)	0.7714(2)	0.96595 (19)	0.0650 (9)
HI0A	-0.0509	0.7041	1.0188	0.078°
U1/	0.0273(3)	0.7245 (2)	0.89283 (18)	0.0513(7)
П1/А	-0.03/0	0.08/3	0.8972	0.002*
	0.129/(3)	0.73254 (18)	0.81485 (16)	0.0372 (6)
C19	0.2234 (2)	0.79467 (18)	0.80346 (16)	0.0359 (6)
C20	0.2114 (3)	0.8423 (2)	0.87871 (17)	0.0476 (7)
C21	0.3518 (3)	0.77905 (18)	0.63364 (16)	0.0344 (6)

C22	0.1399 (3)	0.66459 (18)	0.75014 (16)	0.0352 (6)
C23	0.1922 (3)	0.48646 (19)	0.98448 (16)	0.0415 (6)
H23A	0.1534	0.4463	0.9633	0.050*
C24	0.1356 (3)	0.5076 (2)	1.07131 (17)	0.0500 (7)
H24A	0.0600	0.4828	1.1077	0.060*
C25	0.1930 (3)	0.5658 (2)	1.10280 (17)	0.0508 (7)
H25A	0.1575	0.5810	1.1614	0.061*
C26	0.3036 (3)	0.60142 (19)	1.04707 (17)	0.0457 (7)
H26A	0.3440	0.6409	1.0678	0.055*
C27	0.3552 (2)	0.57877 (17)	0.95985 (16)	0.0339 (6)
C28	0.4746 (2)	0.61537 (18)	0.89526 (16)	0.0353 (6)
C29	0.5408 (3)	0.6765 (2)	0.91684 (19)	0.0502 (7)
H29A	0.5103	0.6979	0.9731	0.060*
C30	0.6526 (3)	0.7058 (2)	0.8545 (2)	0.0595 (8)
H30A	0.6986	0.7470	0.8681	0.071*
C31	0.6950 (3)	0.6735 (2)	0.7725 (2)	0.0539 (8)
H31A	0.7709	0.6918	0.7296	0.065*
C32	0.6240 (3)	0.61362 (19)	0.75418 (19)	0.0444 (7)
H32A	0.6524	0.5927	0.6977	0.053*
C33	0.6221 (3)	0.18375 (19)	0.81790 (16)	0.0399 (6)
C34	0.5646 (3)	0.1055 (2)	0.86429 (19)	0.0566 (8)
H34A	0.4707	0.1104	0.8730	0.068*
C35	0.6422 (4)	0.0185 (2)	0.8990 (2)	0.0677 (9)
H35A	0.6001	-0.0330	0.9308	0.081*
C36	0.7771 (4)	0.0106 (2)	0.8860 (2)	0.0683 (10)
H36A	0.8284	-0.0473	0.9091	0.082*
C37	0.9870 (4)	0.0775 (3)	0.8269 (2)	0.0681 (10)
H37A	1.0369	0.0190	0.8501	0.082*
C38	1.0529 (3)	0.1503 (3)	0.7835 (2)	0.0718 (10)
H38A	1.1460	0.1436	0.7798	0.086*
C39	0.9791 (3)	0.2366 (2)	0.74377 (19)	0.0549 (8)
H39A	1.0251	0.2866	0.7132	0.066*
C40	0.8424 (3)	0.2495 (2)	0.74856 (16)	0.0406 (6)
C41	0.7661 (3)	0.17662 (19)	0.80045 (16)	0.0416 (7)
C42	0.8443 (3)	0.0873 (2)	0.83827 (18)	0.0523 (8)
C43	0.5196 (3)	0.27347 (19)	0.79374 (16)	0.0364 (6)
C44	0.7856 (2)	0.3351 (2)	0.68661 (16)	0.0380 (6)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.0333 (2)	0.0320 (2)	0.0315 (2)	-0.00393 (17)	-0.00973 (16)	-0.00581 (16)
Mn2	0.0315 (2)	0.0347 (2)	0.0302 (2)	-0.00291 (17)	-0.00903 (16)	-0.00567 (16)
01	0.0309 (9)	0.0412 (11)	0.0367 (9)	-0.0018 (8)	-0.0149 (8)	-0.0085 (8)
O1W	0.0375 (11)	0.0660 (14)	0.0461 (11)	-0.0069 (10)	-0.0108 (8)	-0.0143 (10)
O2	0.0279 (10)	0.0872 (16)	0.0441 (10)	0.0038 (10)	-0.0082 (8)	-0.0219 (10)
O2W	0.1071 (17)	0.0392 (12)	0.0356 (10)	-0.0111 (11)	-0.0227 (11)	-0.0040 (9)
O3	0.0370 (11)	0.0511 (13)	0.0691 (13)	-0.0090 (9)	-0.0165 (9)	-0.0124 (10)

O3W	0.0442 (11)	0.0711 (14)	0.0375 (10)	0.0161 (10)	-0.0086 (8)	-0.0071 (10)
O4	0.0353 (9)	0.0334 (10)	0.0339 (9)	0.0017 (7)	-0.0099 (7)	-0.0045 (7)
O4W	0.0425 (11)	0.0464 (12)	0.0609 (12)	-0.0088 (8)	-0.0163 (9)	-0.0144 (9)
O5	0.0408 (10)	0.0348 (10)	0.0376 (9)	0.0003 (8)	-0.0130 (8)	-0.0099 (8)
O5W	0.135 (2)	0.0717 (17)	0.0772 (16)	-0.0367 (16)	-0.0068 (15)	-0.0169 (13)
O6	0.0444 (11)	0.0498 (12)	0.0548 (11)	-0.0058 (9)	-0.0165 (9)	-0.0186 (9)
O6W	0.0503 (12)	0.0620 (14)	0.0833 (15)	-0.0197 (11)	-0.0154 (11)	-0.0184 (12)
O7	0.0491 (12)	0.0523 (13)	0.0646 (13)	-0.0152 (10)	-0.0221 (10)	-0.0123 (10)
O8	0.0347 (10)	0.0420 (11)	0.0327 (9)	-0.0029 (8)	-0.0115 (7)	-0.0117 (8)
N1	0.0365 (12)	0.0349 (13)	0.0365 (11)	-0.0080 (10)	-0.0066 (9)	-0.0080 (10)
N2	0.0313 (12)	0.0341 (12)	0.0376 (11)	-0.0053 (10)	-0.0096 (9)	-0.0049 (9)
N3	0.0363 (12)	0.0364 (12)	0.0306 (11)	-0.0052 (10)	-0.0102 (9)	-0.0036 (9)
N4	0.0314 (12)	0.0363 (13)	0.0374 (11)	-0.0041 (10)	-0.0093 (9)	-0.0016 (10)
C1	0.0496 (18)	0.0409 (17)	0.0514 (16)	-0.0159 (14)	-0.0083 (13)	-0.0036 (13)
C2	0.0457 (19)	0.062 (2)	0.065 (2)	-0.0248 (17)	-0.0051 (15)	-0.0090 (17)
C3	0.0321 (16)	0.068 (2)	0.076 (2)	-0.0112 (16)	-0.0107 (15)	-0.0121 (18)
C4	0.0324 (16)	0.0529 (19)	0.0619 (18)	-0.0046 (14)	-0.0133 (13)	-0.0071 (15)
C5	0.0307 (14)	0.0386 (16)	0.0334 (13)	-0.0029 (12)	-0.0065 (11)	-0.0123 (12)
C6	0.0339 (14)	0.0308 (15)	0.0286 (12)	-0.0035 (12)	-0.0060 (10)	-0.0098 (11)
C7	0.0376 (15)	0.0410 (17)	0.0476 (16)	0.0038 (13)	-0.0140 (12)	-0.0088 (13)
C8	0.0563 (19)	0.0295 (16)	0.0531 (17)	-0.0040 (14)	-0.0163 (14)	0.0007 (13)
C9	0.0524 (19)	0.0409 (18)	0.0580 (18)	-0.0169 (15)	-0.0138 (14)	0.0028 (14)
C10	0.0364 (15)	0.0404 (17)	0.0557 (17)	-0.0079 (13)	-0.0124 (13)	-0.0027 (14)
C11	0.0325 (14)	0.0418 (16)	0.0407 (14)	-0.0018 (12)	-0.0164 (11)	-0.0110 (12)
C12	0.0413 (17)	0.075 (2)	0.0647 (19)	-0.0169 (16)	-0.0157 (14)	-0.0275 (17)
C13	0.055 (2)	0.081 (3)	0.094 (3)	-0.0157 (19)	-0.0222 (19)	-0.044 (2)
C14	0.058 (2)	0.075 (2)	0.071 (2)	0.0076 (15)	-0.0334 (18)	-0.0450 (19)
C15	0.080 (2)	0.064 (2)	0.0386 (16)	0.0142 (19)	-0.0195 (16)	-0.0222 (16)
C16	0.076 (2)	0.061 (2)	0.0347 (16)	0.0105 (19)	0.0034 (15)	-0.0059 (15)
C17	0.0469 (17)	0.0460 (18)	0.0471 (16)	-0.0014 (14)	0.0010 (13)	-0.0021 (14)
C18	0.0395 (15)	0.0308 (15)	0.0345 (13)	0.0057 (12)	-0.0110 (12)	-0.0018 (11)
C19	0.0346 (14)	0.0356 (15)	0.0365 (13)	0.0070 (12)	-0.0161 (11)	-0.0091 (11)
C20	0.0505 (17)	0.0488 (17)	0.0422 (15)	0.0132 (12)	-0.0207 (13)	-0.0177 (14)
C21	0.0305 (15)	0.0389 (15)	0.0355 (13)	-0.0080 (12)	-0.0089 (11)	-0.0060 (12)
C22	0.0330 (12)	0.0320 (15)	0.0359 (13)	-0.0037 (10)	-0.0074 (11)	0.0010 (11)
C23	0.0430 (16)	0.0453 (17)	0.0382 (14)	-0.0153 (13)	-0.0091 (12)	-0.0037 (12)
C24	0.0515 (18)	0.0550 (19)	0.0380 (15)	-0.0127 (15)	-0.0015 (13)	-0.0041 (14)
C25	0.0591 (19)	0.058 (2)	0.0301 (14)	-0.0049 (16)	-0.0044 (13)	-0.0104 (13)
C26	0.0567 (18)	0.0458 (18)	0.0395 (15)	-0.0067 (15)	-0.0176 (14)	-0.0130 (13)
C27	0.0383 (14)	0.0308 (14)	0.0334 (13)	-0.0007 (12)	-0.0165 (11)	-0.0028 (11)
C28	0.0347 (14)	0.0318 (14)	0.0399 (14)	-0.0007 (12)	-0.0165 (11)	-0.0033 (12)
C29	0.0487 (18)	0.0542 (19)	0.0550 (17)	-0.0127 (15)	-0.0199 (14)	-0.0109 (15)
C30	0.058 (2)	0.055 (2)	0.079 (2)	-0.0227 (17)	-0.0274 (17)	-0.0102 (17)
C31	0.0350 (16)	0.0527 (19)	0.070 (2)	-0.0142 (15)	-0.0120 (14)	0.0043 (16)
C32	0.0336 (15)	0.0435 (17)	0.0510 (16)	-0.0032 (13)	-0.0096 (13)	-0.0022 (13)
C33	0.0509 (18)	0.0347 (16)	0.0338 (13)	0.0002 (13)	-0.0129 (12)	-0.0107 (12)
C34	0.071 (2)	0.0453 (19)	0.0509 (17)	-0.0074 (17)	-0.0137 (15)	-0.0077 (15)
C35	0.099 (3)	0.039 (2)	0.058 (2)	-0.007 (2)	-0.018 (2)	-0.0017 (15)
C36	0.100 (3)	0.045 (2)	0.0519 (19)	0.018 (2)	-0.031 (2)	-0.0111 (16)

C37	0.074 (3)	0.066 (2)	0.054 (2)	0.033 (2)	-0.0330 (18)	-0.0194 (18)		
C38	0.052 (2)	0.096 (3)	0.064 (2)	0.020 (2)	-0.0286 (17)	-0.026 (2)		
C39	0.0449 (18)	0.068 (2)	0.0556 (18)	0.0027 (16)	-0.0219 (14)	-0.0202 (16)		
C40	0.0414 (16)	0.0465 (17)	0.0355 (14)	0.0057 (13)	-0.0148 (12)	-0.0186 (13)		
C41	0.0542 (18)	0.0390 (16)	0.0328 (13)	0.0074 (14)	-0.0192 (12)	-0.0153 (12)		
C42	0.068 (2)	0.0467 (19)	0.0381 (15)	0.0158 (16)	-0.0225 (14)	-0.0162 (14)		
C43	0.0402 (16)	0.0362 (16)	0.0301 (13)	-0.0055 (13)	-0.0050 (11)	-0.0057 (12)		
C44	0.0320 (15)	0.0464 (18)	0.0366 (14)	-0.0011 (13)	-0.0074 (11)	-0.0171 (13)		
Geometric paran	neters (Å, °)							
Mn1—O1		2,1422 (15)	C1	0—H10A	0.930	00		
Mn1—O2W		2.1590 (18)	Cl	1—C12	1.359) (3)		
$Mn1 - O8^{i}$		2 1864 (15)	C1	1—C19	1 432	(3)		
Mn1-00 Mn1-01W		2.1833(17)	C1	1	1.511	(3)		
Mn1—N2		2.1676 (17)	C1	2-C13	1.511	(3) (4)		
Mn1—N1		2.201(2)	C12	2—613 2—H12А	0.930	0		
Mn2-04		2.1614 (16)	C1	3—C14	1 340) (4)		
Mn2—O3W		2.1749 (16)	Cl	3—Н13А	0.930	00		
Mn2—O5		2.1913 (17)	C14	4—C20	1.402	2 (4)		
Mn2—O4W		2.2288 (16)	C14—H14A		0 9300			
Mn2—N3		2.2533 (18)	C1:	5—C16	1.350) (4)		
Mn2—N4		2.258 (2) C15—C20		1.411	(4)			
O1—C21		1.269 (3)	C1:	5—H15A	0.930	00		
O1W—H1WA		0.8451	Cl	6—C17	1.403	6 (4)		
O1W—H1WB		0.8403	C16—H16A		0.8403 C16—H16A		0.930	00
O2—C21		1.238 (3)	C17	7—С18	1.374	(3)		
O2W—H2WA		0.8269	C17	7—H17A	0.930	00		
O2W—H2WB		0.8319	Cl	8—C19	1.423	6 (3)		
O3—C22		1.243 (3)	Cl	8—C22	1.507	' (3)		
O3W—H3WA		0.8400	Cl	9—С20	1.432	2 (3)		
O3W—H3WB		0.8399	C2.	3—C24	1.375	5 (3)		
O4—C22		1.270 (3)	C2.	3—Н23А	0.930	00		
O4W—H4WA		0.8733	C24	4—C25	1.363	6 (4)		
O4W—H4WB		0.8342	C24	4—H24A	0.930	00		
O5—C43		1.265 (3)	C2:	5—C26	1.367	' (4)		
O5W—H5WA		0.9661	C2:	5—H25A	0.930	00		
O5W—H5WB		0.9411	C2	6—C27	1.383	(3)		
O6—C43		1.260 (3)	C2	6—H26A	0.930	00		
O6W—H6WA		0.8364	C2'	7—C28	1.488	8 (3)		
O6W—H6WB		0.8096	C2	8—C29	1.375	5 (3)		
O7—C44		1.247 (3)	.47 (3) C29—C3		1.377	' (4)		
O8—C44		1.273 (3)	C2	9—H29A	0.930	00		
O8—Mn1 ⁱ		2.1864 (15)	C3	0—C31	1.362	2 (4)		
N1—C1		1.341 (3)	C3	0—H30A	0.930	00		
N1—C5		1.347 (3)	C3	1—С32	1.372	2 (4)		
N2-C10		1.337 (3)	C3	1—H31A	0.930	00		
N2—C6		1.342 (3)	C32	2—Н32А	0.930	00		
N3—C23		1.332 (3)	C3.	3—C34	1.373	6 (4)		

N3—C27	1.343 (3)	C33—C41	1.420 (4)
N4—C32	1.342 (3)	C33—C43	1.509 (3)
N4—C28	1.342 (3)	C34—C35	1.399 (4)
C1—C2	1.374 (4)	C34—H34A	0.9300
C1—H1A	0.9300	C35—C36	1.333 (4)
C2—C3	1.361 (4)	C35—H35A	0.9300
C2—H2A	0.9300	C36—C42	1.411 (4)
C3—C4	1.378 (4)	C36—H36A	0.9300
С3—НЗА	0.9300	C37—C38	1.344 (5)
C4—C5	1.386 (3)	C37—C42	1.412 (4)
C4—H4A	0.9300	С37—Н37А	0.9300
С5—С6	1.480 (3)	C38—C39	1.405 (4)
С6—С7	1.375 (3)	C38—H38A	0.9300
С7—С8	1.378 (4)	C39—C40	1.363 (4)
C7—H7A	0.9300	С39—Н39А	0.9300
С8—С9	1.360 (4)	C40—C41	1.436 (4)
C8—H8A	0.9300	C40—C44	1.494 (4)
C9—C10	1.375 (4)	C41—C42	1.443 (4)
С9—Н9А	0.9300		
O1—Mn1—O2W	83.03 (6)	C14—C13—C12	119.0 (3)
O1—Mn1—O8 ⁱ	161.96 (6)	C14—C13—H13A	120.5
O2W—Mn1—O8 ⁱ	80.01 (6)	C12—C13—H13A	120.5
O1—Mn1—O1W	89.79 (6)	C13—C14—C20	121.4 (3)
O2W—Mn1—O1W	97.14 (7)	C13—C14—H14A	119.3
O8 ⁱ —Mn1—O1W	86.29 (6)	C20—C14—H14A	119.3
O1—Mn1—N2	96.36 (7)	C16—C15—C20	121.2 (3)
O2W—Mn1—N2	174.79 (7)	C16—C15—H15A	119.4
O8 ⁱ —Mn1—N2	101.08 (6)	C20—C15—H15A	119.4
O1W—Mn1—N2	88.02 (7)	C15—C16—C17	119.7 (3)
O1—Mn1—N1	98.63 (6)	C15—C16—H16A	120.1
O2W—Mn1—N1	103.07 (8)	C17—C16—H16A	120.1
O8 ⁱ —Mn1—N1	91.17 (6)	C18—C17—C16	121.3 (3)
O1W—Mn1—N1	158.87 (8)	C18—C17—H17A	119.4
N2—Mn1—N1	71.87 (7)	C16—C17—H17A	119.4
O4—Mn2—O3W	83.70 (6)	C17—C18—C19	120.6 (2)
O4—Mn2—O5	165.69 (6)	C17—C18—C22	114.4 (2)
O3W—Mn2—O5	85.90 (6)	C19—C18—C22	124.8 (2)
O4—Mn2—O4W	84.94 (6)	C18—C19—C11	125.8 (2)
O3W—Mn2—O4W	100.87 (7)	C18—C19—C20	117.1 (2)
O5—Mn2—O4W	87.41 (6)	C11—C19—C20	117.1 (2)
O4—Mn2—N3	95.56 (6)	C14—C20—C15	119.8 (3)
O3W— $Mn2$ — $N3$	167.88 (7)	C14—C20—C19	120.2 (3)
O5-Mn2-N3	96.66 (7)	C15—C20—C19	119.9 (3)
O4W—Mn2—N3	91.10(7)	02—C21—O1	125.6 (2)
04—Mn2—N4	94.31 (7)	O2-C21-C11	118 1 (2)
O3W—Mn2—N4	95.66 (7)	01-C21-C11	116.1.(2)
O5—Mn2—N4	96.47 (7)	03-C22-04	124 5 (2)
O4W—Mn2—N4	163.26 (7)	O3—C22—C18	118.5 (2)
		•	(=)

N3—Mn2—N4	72.30 (7)	O4—C22—C18	116.8 (2)
C21—O1—Mn1	124.46 (15)	N3—C23—C24	123.3 (2)
Mn1—O1W—H1WA	101.5	N3—C23—H23A	118.3
Mn1—O1W—H1WB	122.4	C24—C23—H23A	118.3
H1WA—O1W—H1WB	103.1	C25—C24—C23	118.4 (3)
Mn1—O2W—H2WA	120.1	C25—C24—H24A	120.8
Mn1—O2W—H2WB	126.4	C23—C24—H24A	120.8
H2WA—O2W—H2WB	105.6	C24—C25—C26	119.1 (2)
Mn2—O3W—H3WA	117.9	C24—C25—H25A	120.4
Mn2—O3W—H3WB	100.3	С26—С25—Н25А	120.4
H3WA—O3W—H3WB	136.0	C25—C26—C27	120.0 (2)
C22—O4—Mn2	136.17 (15)	C25—C26—H26A	120.0
Mn2—O4W—H4WA	93.6	С27—С26—Н26А	120.0
Mn2—O4W—H4WB	121.8	N3—C27—C26	120.9 (2)
H4WA—O4W—H4WB	102.4	N3—C27—C28	116.1 (2)
C43—O5—Mn2	124.04 (16)	C26—C27—C28	123.0 (2)
H5WA—O5W—H5WB	83.4	N4—C28—C29	121.7 (2)
H6WA—O6W—H6WB	106.2	N4—C28—C27	115.7 (2)
C44—O8—Mn1 ⁱ	132.04 (14)	C29—C28—C27	122.6 (2)
C1—N1—C5	117.9 (2)	C28—C29—C30	119.4 (3)
C1—N1—Mn1	124.66 (18)	C28—C29—H29A	120.3
C5—N1—Mn1	117.44 (15)	С30—С29—Н29А	120.3
C10—N2—C6	117.5 (2)	C31—C30—C29	119.1 (3)
C10—N2—Mn1	124.08 (17)	С31—С30—Н30А	120.4
C6—N2—Mn1	118.38 (16)	С29—С30—Н30А	120.4
C23—N3—C27	118.2 (2)	C30—C31—C32	118.9 (3)
C23—N3—Mn2	123.94 (16)	C30-C31-H31A	120.5
C27—N3—Mn2	117.85 (15)	C32—C31—H31A	120.5
C32—N4—C28	118.0 (2)	N4—C32—C31	122.8 (3)
C32—N4—Mn2	124.01 (17)	N4—C32—H32A	118.6
C28—N4—Mn2	117.84 (16)	C31—C32—H32A	118.6
N1—C1—C2	123.2 (3)	C34—C33—C41	119.8 (3)
N1—C1—H1A	118.4	C34—C33—C43	114.2 (3)
C2—C1—H1A	118.4	C41—C33—C43	125.9 (2)
C3—C2—C1	118.8 (3)	C33—C34—C35	122.4 (3)
C3—C2—H2A	120.6	С33—С34—Н34А	118.8
C1—C2—H2A	120.6	C35—C34—H34A	118.8
C2—C3—C4	119.4 (3)	C36—C35—C34	119.2 (3)
С2—С3—НЗА	120.3	C36—C35—H35A	120.4
С4—С3—НЗА	120.3	C34—C35—H35A	120.4
C3—C4—C5	119.2 (3)	C35—C36—C42	122.0 (3)
C3—C4—H4A	120.4	С35—С36—Н36А	119.0
С5—С4—Н4А	120.4	C42—C36—H36A	119.0
N1—C5—C4	121.6 (2)	C38—C37—C42	121.9 (3)
N1—C5—C6	116.4 (2)	С38—С37—Н37А	119.0
C4—C5—C6	122.0 (2)	С42—С37—Н37А	119.0
N2—C6—C7	121.9 (2)	C37—C38—C39	119.0 (3)
N2—C6—C5	115.8 (2)	С37—С38—Н38А	120.5
C7—C6—C5	122.3 (2)	C39—C38—H38A	120.5

C6—C7—C8	119.7 (3)	C40—C39—C38	122.2 (3)
С6—С7—Н7А	120.2	С40—С39—Н39А	118.9
С8—С7—Н7А	120.2	С38—С39—Н39А	118.9
C9—C8—C7	118.8 (3)	C39—C40—C41	120.5 (3)
С9—С8—Н8А	120.6	C39—C40—C44	115.5 (3)
С7—С8—Н8А	120.6	C41—C40—C44	123.4 (2)
C8—C9—C10	118.8 (3)	C33—C41—C40	126.5 (2)
С8—С9—Н9А	120.6	C33—C41—C42	117.1 (3)
С10—С9—Н9А	120.6	C40—C41—C42	116.4 (3)
N2-C10-C9	123.4 (3)	C36—C42—C37	120.8 (3)
N2-C10-H10A	118.3	C36—C42—C41	119.5 (3)
C9—C10—H10A	118.3	C37—C42—C41	119.7 (3)
C12—C11—C19	119.3 (2)	O6—C43—O5	124.7 (2)
C12—C11—C21	114.2 (2)	O6—C43—C33	116.8 (2)
C19—C11—C21	126.2 (2)	O5—C43—C33	118.1 (2)
C11—C12—C13	123.0 (3)	O7—C44—O8	123.1 (2)
C11—C12—H12A	118.5	O7—C44—C40	119.8 (2)
C13—C12—H12A	118.5	O8—C44—C40	117.0 (2)
O2W—Mn1—O1—C21	64.86 (19)	C17—C18—C19—C20	4.1 (4)
O8 ⁱ —Mn1—O1—C21	44.9 (3)	C22-C18-C19-C20	-169.9 (2)
O1W—Mn1—O1—C21	-32.36 (19)	C12-C11-C19-C18	178.5 (3)
N2—Mn1—O1—C21	-120.34 (19)	C21-C11-C19-C18	4.3 (4)
N1—Mn1—O1—C21	167.10 (19)	C12-C11-C19-C20	-0.7 (4)
O3W—Mn2—O4—C22	168.7 (2)	C21—C11—C19—C20	-175.0 (2)
O5—Mn2—O4—C22	125.1 (3)	C13—C14—C20—C15	-177.8 (3)
O4W—Mn2—O4—C22	67.2 (2)	C13-C14-C20-C19	0.0 (5)
N3—Mn2—O4—C22	-23.4 (2)	C16-C15-C20-C14	175.1 (3)
N4—Mn2—O4—C22	-96.1 (2)	C16-C15-C20-C19	-2.7 (4)
O4—Mn2—O5—C43	-23.0 (4)	C18-C19-C20-C14	-178.3 (2)
O3W—Mn2—O5—C43	-66.42 (18)	C11—C19—C20—C14	1.0 (4)
O4W—Mn2—O5—C43	34.68 (18)	C18—C19—C20—C15	-0.5 (4)
N3—Mn2—O5—C43	125.48 (18)	C11—C19—C20—C15	178.8 (2)
N4—Mn2—O5—C43	-161.66 (18)	Mn1—O1—C21—O2	4.7 (4)
O1—Mn1—N1—C1	-89.05 (19)	Mn1-01-C21-C11	178.84 (15)
O2W—Mn1—N1—C1	-4.3 (2)	C12-C11-C21-O2	56.0 (3)
O8 ⁱ —Mn1—N1—C1	75.76 (19)	C19—C11—C21—O2	-129.5 (3)
O1W—Mn1—N1—C1	158.48 (19)	C12-C11-C21-O1	-118.6 (3)
N2—Mn1—N1—C1	177.0 (2)	C19—C11—C21—O1	55.8 (3)
O1—Mn1—N1—C5	93.41 (16)	Mn2—O4—C22—O3	-105.4 (3)
O2W—Mn1—N1—C5	178.20 (15)	Mn2-04-C22-C18	70.1 (3)
O8 ⁱ —Mn1—N1—C5	-101.78 (16)	C17—C18—C22—O3	47.9 (3)
O1W—Mn1—N1—C5	-19.1 (3)	C19—C18—C22—O3	-137.7 (3)
N2—Mn1—N1—C5	-0.50 (15)	C17—C18—C22—O4	-127.8 (2)
O1-Mn1-N2-C10	82.40 (19)	C19—C18—C22—O4	46.5 (3)
O8 ⁱ —Mn1—N2—C10	-92.99 (19)	C27—N3—C23—C24	-0.1 (4)
O1W—Mn1—N2—C10	-7.17 (19)	Mn2—N3—C23—C24	-177.8 (2)
N1—Mn1—N2—C10	179.4 (2)	N3—C23—C24—C25	-0.6 (4)
O1—Mn1—N2—C6	-95.01 (16)	C23—C24—C25—C26	0.5 (4)

O8 ⁱ —Mn1—N2—C6	89.60 (16)	C24—C25—C26—C27	0.3 (4)
O1W—Mn1—N2—C6	175.42 (16)	C23—N3—C27—C26	1.0 (4)
N1—Mn1—N2—C6	2.01 (15)	Mn2—N3—C27—C26	178.81 (18)
O4—Mn2—N3—C23	87.9 (2)	C23—N3—C27—C28	-179.7 (2)
O3W—Mn2—N3—C23	173.8 (3)	Mn2—N3—C27—C28	-1.9 (3)
O5—Mn2—N3—C23	-84.6 (2)	C25-C26-C27-N3	-1.1 (4)
O4W—Mn2—N3—C23	2.9 (2)	C25—C26—C27—C28	179.6 (2)
N4—Mn2—N3—C23	-179.3 (2)	C32—N4—C28—C29	0.2 (4)
O4—Mn2—N3—C27	-89.76 (17)	Mn2—N4—C28—C29	-176.44 (19)
O3W—Mn2—N3—C27	-3.9 (4)	C32—N4—C28—C27	-179.0 (2)
O5—Mn2—N3—C27	97.70 (17)	Mn2—N4—C28—C27	4.4 (3)
O4W—Mn2—N3—C27	-174.78 (17)	N3-C27-C28-N4	-1.7 (3)
N4—Mn2—N3—C27	3.01 (16)	C26—C27—C28—N4	177.6 (2)
O4—Mn2—N4—C32	-85.9 (2)	N3—C27—C28—C29	179.2 (2)
O3W—Mn2—N4—C32	-1.8 (2)	C26—C27—C28—C29	-1.5 (4)
O5—Mn2—N4—C32	84.7 (2)	N4-C28-C29-C30	-0.6 (4)
O4W—Mn2—N4—C32	-172.7 (2)	C27—C28—C29—C30	178.5 (3)
N3—Mn2—N4—C32	179.6 (2)	C28—C29—C30—C31	0.1 (4)
O4—Mn2—N4—C28	90.49 (17)	C29—C30—C31—C32	0.7 (4)
O3W—Mn2—N4—C28	174.57 (17)	C28—N4—C32—C31	0.7 (4)
O5—Mn2—N4—C28	-98.93 (17)	Mn2—N4—C32—C31	177.1 (2)
O4W—Mn2—N4—C28	3.7 (4)	C30-C31-C32-N4	-1.1 (4)
N3—Mn2—N4—C28	-3.97 (16)	C41—C33—C34—C35	2.7 (4)
C5—N1—C1—C2	-0.4 (4)	C43—C33—C34—C35	-174.6 (2)
Mn1—N1—C1—C2	-177.9 (2)	C33—C34—C35—C36	-0.7 (4)
N1—C1—C2—C3	-0.6 (4)	C34—C35—C36—C42	0.1 (5)
C1—C2—C3—C4	1.0 (4)	C42—C37—C38—C39	-3.7 (5)
C2—C3—C4—C5	-0.5 (4)	C37—C38—C39—C40	0.7 (4)
C1—N1—C5—C4	0.9 (3)	C38—C39—C40—C41	4.3 (4)
Mn1—N1—C5—C4	178.60 (18)	C38—C39—C40—C44	-167.2 (2)
C1—N1—C5—C6	-178.6 (2)	C34—C33—C41—C40	176.1 (2)
Mn1—N1—C5—C6	-0.9 (2)	C43—C33—C41—C40	-7.0 (4)
C3—C4—C5—N1	-0.5 (4)	C34—C33—C41—C42	-3.8 (3)
C3—C4—C5—C6	179.0 (2)	C43—C33—C41—C42	173.1 (2)
C10-N2-C6-C7	-0.7 (3)	C39—C40—C41—C33	174.2 (2)
Mn1—N2—C6—C7	176.86 (17)	C44—C40—C41—C33	-15.1 (4)
C10-N2-C6-C5	179.3 (2)	C39—C40—C41—C42	-6.0 (3)
Mn1—N2—C6—C5	-3.1 (2)	C44—C40—C41—C42	164.8 (2)
N1C5	2.6 (3)	C35—C36—C42—C37	178.9 (3)
C4—C5—C6—N2	-176.8 (2)	C35—C36—C42—C41	-1.4 (4)
N1—C5—C6—C7	-177.4 (2)	C38—C37—C42—C36	-178.5 (3)
C4—C5—C6—C7	3.2 (3)	C38—C37—C42—C41	1.7 (4)
N2—C6—C7—C8	0.5 (4)	C33—C41—C42—C36	3.2 (3)
C5—C6—C7—C8	-179.5 (2)	C40—C41—C42—C36	-176.7 (2)
C6—C7—C8—C9	-0.1 (4)	C33—C41—C42—C37	-177.1 (2)
C7—C8—C9—C10	-0.1 (4)	C40—C41—C42—C37	3.1 (3)
C6—N2—C10—C9	0.6 (4)	Mn2—O5—C43—O6	-10.1 (3)
Mn1—N2—C10—C9	-176.84 (19)	Mn2—O5—C43—C33	176.67 (15)
C8—C9—C10—N2	-0.2 (4)	C34—C33—C43—O6	-48.6 (3)

C19—C11—C12—C13	-0.6 (4)	C41—C33—C43—O6	134.4 (2)
C21—C11—C12—C13	174.3 (3)	C34—C33—C43—O5	125.2 (2)
C11—C12—C13—C14	1.7 (5)	C41—C33—C43—O5	-51.8 (3)
C12-C13-C14-C20	-1.3 (5)	Mn1 ⁱ —O8—C44—O7	107.6 (3)
C20-C15-C16-C17	2.3 (5)	Mn1 ⁱ —O8—C44—C40	-68.3 (3)
C15-C16-C17-C18	1.4 (5)	C39—C40—C44—O7	-41.9 (3)
C16—C17—C18—C19	-4.7 (4)	C41—C40—C44—O7	146.9 (2)
C16-C17-C18-C22	169.9 (2)	C39—C40—C44—O8	134.2 (2)
C17—C18—C19—C11	-175.1 (2)	C41—C40—C44—O8	-37.0 (3)
C22—C18—C19—C11	10.8 (4)		

Symmetry codes: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O1W—H1WA···O2	0.85	2.00	2.690 (2)	139
O1W—H1WB···O6 ⁱ	0.84	2.01	2.776 (2)	151
O2W—H2WA···O4	0.83	1.90	2.712 (2)	166
O2W—H2WB···O5W	0.83	1.90	2.716 (3)	169
O3W—H3WA···O8	0.84	1.92	2.742 (2)	167
O3W—H3WB···O2W	0.84	2.24	3.083 (3)	180
O4W—H4WA···O6	0.87	1.78	2.622 (2)	161
O4W—H4WB…O6W	0.83	2.03	2.853 (3)	170
O5W—H5WA···O7 ⁱ	0.97	2.16	2.807 (3)	123
O5W—H5WB···O6W	0.94	2.07	2.930 (3)	150
O6W—H6WA···O7 ⁱⁱ	0.84	1.99	2.798 (3)	164
O6W—H6WB···O3	0.81	1.95	2.752 (3)	171

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*-1, *y*, *z*.

Fig. 2